Fossil Wiki

Fossil Wiki has moved! The new site is available at YourWiki

READ MORE

Fossil Wiki
Advertisement
File:Placeholder

Eurypterus (/jʊˈrɪptərəs/ ew-RIP-tər-əs) is an extinct genus of sea scorpions. They existed during the Silurian Period, from around 432 to 418 million years ago.

There are fifteen species belonging to the genus Eurypterus, the most common of which is Eurypterus remipes, the first eurypterid fossil discovered and the state fossil of New York.

Members of Eurypterus averaged at about 5 to 9 in (13 to 23 cm) in length, but the largest individual discovered was 1.3 m (4.3 ft) long. They all possessed spine-bearing appendages and a large paddle they used for swimming. They were generalist species, equally likely to engage in predation or scavenging.

Discovery[]

The first fossil of Eurypterus was found in 1818 by S. L. Mitchill, a fossil collector. It was recovered from the Bertie Formation of New York (near Westmoreland, Oneida County). Mitchill interpreted the appendages on the carapace as barbels arising from the mouth.[2] He consequently identified the fossil as a catfish of the genus Silurus.

It was only after seven years, in 1825, that the American zoologist James Ellsworth De Kay identified the fossil correctly as an arthropod.[5] He named it Eurypterus remipes and established the genus Eurypterus in the process. The name means "wide wing" or "broad paddle", referring to the swimming legs, from Greek εὐρύς (eurús, wide) and πτερόν (pteron, wing).[2]

However, De Kay thought Eurypterus was a branchiopod (a group of crustaceans which include fairy shrimps and water fleas).[5] Soon after, Eurypterus lacustris was also discovered in New York in 1835 by the paleontologist Richard Harlan. Another species was discovered in Estonia in 1858 by Jan Nieszkowski. He considered it to be of the same species as the first discovery (E. remipes); it is now known as Eurypterus tetragonophthalmus.[2] These specimens from Estonia are often of extraordinary quality, retaining the actual cuticle of their exoskeletons. In 1898, the Swedish paleontologist Gerhard Holm separated these fossils from the bedrock with acids. Holm was then able to examine the almost perfectly preserved fragments under a microscope. His remarkable study led to the modern breakthrough on eurypterid morphology.[3]

More fossils were recovered in great abundance in New York in the 19th century, and elsewhere in eastern Eurasia and North America. Today, Eurypterus remains one of the most commonly found and best known eurypterid genera, comprising more than 95% of all known eurypterid fossils.

Description[]

The largest arthropods to have ever existed were eurypterids. The largest known species (Jaekelopterus rhenaniae) reached up to 2.5 m (8.2 ft) in length, about the size of a crocodile. Species of Eurypterus, however, were much smaller.

E. remipes are usually between 13 to 20 cm (5 to 8 in) in length. E. lacustris average at larger sizes at 15 to 23 cm (6 to 9 in) in length. However, a single telson (the posteriormost division of the body) of a specimen of this species reaches this length, being almost 15 cm (5.9 in) long and indicating a specimen of more than half a meter of length. The largest specimen of E. remipes ever found was 1.3 m (4.3 ft) long, currently on display at the Paleontological Research Institution of New York.

Eurypterus fossils often occur in similar sizes in a given area. This may be a result of the fossils being "sorted" into windrows as they were being deposited in shallow waters by storms and wave action.

The Eurypterus body is broadly divided into two parts: the prosoma and the opisthosoma (in turn divided into the mesosoma and the metasoma).

The prosoma is the forward part of the body, it is actually composed of six segments fused together to form the head and the thorax. It contains the semicircular to subrectangular platelike carapace. On the dorsal side of the latter are two large crescent-shaped compound eyes. They also possessed two smaller light-sensitive simple eyes (the median ocelli) near the center of the carapace on a small elevation (known as the ocellar mound). Underneath the carapace is the mouth and six appendages, usually referred to in Roman numerals I-VI. Each appendage in turn is composed of nine segments (known as podomeres) labeled in Arabic numerals 1–9. The first segments which connect the appendages to the body are known as the coxa (plural coxae).

The first pair (Appendage I) are the chelicerae, small pincer-like arms used for tearing food apart (mastication) during feeding. After the chelicerae are three pairs of short legs (Appendages II, III, and IV). They are spiniferous, with predominantly two spines on each podomere and with the tipmost segment having a single spine. The last two segments are often indistinguishable and give the appearance of a single segment having three spines. They are used both for walking and for food capture. The next pair (Appendage V) is the most leg-like of all appendages, longer than the first three pairs and are mostly spineless except at the tipmost segments. The last pair (Appendage VI) are two broad paddle-like legs used for swimming. The coxae of Appendage VI are broad and flat, resembling an 'ear'.

Based on the width and structure of each segment, they can be divided into the broad preabdomen (segments 1 to 7) and the narrow postabdomen (segments 8 to 12). The preabdomen is the broader segments of the anterior portion of the ophisthosoma while the postabdomen are the last five segments of the Eurypterus body. Each of the segments of the postabdomen contain lateral flattened protrusions known as the epimera with the exception of the last needle-like (styliform) part of the body known as the telson. The segment immediately preceding the telson (which also has the largest epimera of the postabdomen) is known as the pretelson.

An alternative way to divide the ophisthosoma is by function. It can also be divided into the mesosoma (segments 1 to 6), and the metasoma (segments 7 to 12). The mesosoma contains the gills and reproductive organs of Eurypterus. Its ventral segments are overlaid by appendage-derived plates known as Blatfüsse (singular Blatfuss, German for "sheet foot"). Protected within which are the branchial chambers which contain the respiratory organs of Eurypterus. The metasoma, meanwhile, do not possess Blatfüsse.

Some authors incorrectly use mesosoma and preabdomen interchangeably, as with metasoma and postabdomen.

The main respiratory organs of Eurypterus were what seems to be book gills, located in branchial chambers within the segments of the mesosoma. They may have been used for underwater respiration. They are composed of several layers of thin tissue stacked in such a way as to resemble the pages of a book, hence the name. In addition, they also possessed five pairs of oval-shaped areas covered with microscopic projections on the ceiling of the second branchial chambers within the mesosoma, immediately below the gill tracts. These areas are known as Kiemenplatten (or gill-tracts, though the former term is preferred). They are unique to eurypterids.

Eurypterus are sexually dimorphic. On the bottom side of the first two segments of the mesosoma are central appendages used for reproduction. In females, they are long and narrow. In the males they are very short. A minority of authors, however, assume the reverse: longer genital appendage for males, shorter for females.

The exoskeleton of Eurypterus is often covered with small outgrowths known as ornamentation. They include pustules (small protrusions), scales, and striations. They vary by species and are used for identification. For more detailed diagnostic descriptions of each species under Eurypterus, see sections below.

Classification[]

The genus Eurypterus belongs to the family Eurypteridae. They are classified under the superfamily Eurypteroidea, suborder Eurypterina, order Eurypterida, and the subphylum Chelicerata. Until recently, eurypterids were thought to belong to the class Merostomata along with order Xiphosura. It is now believed that eurypterids are a sister group to Arachnida, closer to scorpions and spiders than to horseshoe crabs.

Eurypterus was the first recognized taxon of eurypterids and is the most common. As a consequence, nearly every remotely similar eurypterid in the 19th century was classified under the genus (except for the distinctive members of the family Pterygotidae and Stylonuridae). The genus was eventually split into several genera as the science of taxonomy developed.

In 1958, several species distinguishable by closer placed eyes and spines on their swimming legs were split off into the separate genus Erieopterus by Erik Kjellesvig-Waering. Another split was proposed by Leif Størmer in 1973 when he reclassified some Eurypterus to Baltoeurypterus based on the size of some of the last segments of their swimming legs. O. Erik Tetlie in 2006 deemed these differences too insignificant to justify a separate genus. He merged Baltoeurypterus back into Eurypterus. It is now believed that the minor variations described by Størmer are simply the differences found in adults and juveniles within a species.

The genus Eurypterus derives from E. minor, the oldest known species from the Llandovery of Scotland. E. minor is believed to have diverged from Dolichopterus macrocheirus sometime in the Llandovery. The following is the phylogenetic tree of Eurypterus based on phylogenetic studies by O. Erik Tetlie in 2006. Some species are not represented.

      ←      
             

Dolichopteridae


             
             

Eurypterus minor


             
             

Eurypterus hankeni


             

Eurypterus ornatus


             

Eurypterus dekayi


             

Eurypterus laculatus


             
             
             

Eurypterus pittsfordensis


             

Eurypterus leopoldi


             

Eurypterus serratus



             
             
             

Eurypterus remipes


             

Eurypterus lacustris



             
             

Eurypterus henningsmoeni


             

Eurypterus tetragonophthalmus








Species[]

Advertisement