Gorgosaurus Fossil range: Late Cretaceous 76.6–74 Ma | |
---|---|
Gorgosaurus libratus, a theropod from the Late Cretaceous of North America | |
Scientific classification
| |
|
Gorgosaurus (meaning "fierce lizard") is an extinct genus of tyrannosaurid theropod dinosaur that lived in western North America during the Late Cretaceous Period, between about 77 and 74 million years ago. Fossil remains have been found in the Canadian province of Alberta and possibly the U.S. state of Montana. Paleontologists recognize only the type species, G. libratus, although other species have been erroneously referred to the genus.
Like most known tyrannosaurids, Gorgosaurus was a bipedal predator weighing more than a metric ton as an adult; dozens of large, sharp teeth lined its jaws, while its two-fingered forelimbs were comparatively small. Gorgosaurus was most closely related to Albertosaurus, and more distantly related to the larger Tyrannosaurus. Gorgosaurus and Albertosaurus are extremely similar, distinguished mainly by subtle differences in the teeth and skull bones. Some experts consider G. libratus to be a species of Albertosaurus; this would make Gorgosaurus a junior synonym of that genus.
Gorgosaurus lived in a lush floodplain environment along the edge of an inland sea. An apex predator, it was at the top of the food chain, preying upon abundant ceratopsids and hadrosaurs. In some areas, Gorgosaurus coexisted with another tyrannosaurid, Daspletosaurus. Though these animals were roughly the same size, there is some evidence of niche differentiation between the two. Gorgosaurus is the best-represented tyrannosaurid in the fossil record, known from dozens of specimens. These plentiful remains have allowed scientists to investigate its ontogeny, life history and other aspects of its biology.
Description[]
Gorgosaurus was smaller than Tyrannosaurus or Tarbosaurus, closer in size to Albertosaurus and Daspletosaurus. Adults reached 8 or 9 meters (26 to 30 ft) from snout to tail.[1][2] Paleontologists have estimated full-grown adults to weigh more than 2.4 tonnes (2.7 short tons).[3] The largest known skull measures 99 centimeters (39 in) long, just slightly smaller than that of Daspletosaurus.[1] As in other tyrannosaurids, the skull was large compared to its body size, although chambers within the skull bones and large openings (fenestrae) between bones reduced its weight. Albertosaurus and Gorgosaurus share proportionally longer and lower skulls than Daspletosaurus and other tyrannosaurids. The end of the snout was blunt, and the nasal and parietal bones were fused along the midline of the skull, as in all other members of the family. The eye socket was circular rather than oval or keyhole-shaped as in other tyrannosaurid genera. A tall crest rose from the lacrimal bone in front of each eye, similar to Albertosaurus and Daspletosaurus.[2] Differences in the shape of bones surrounding the brain set Gorgosaurus apart from Albertosaurus.[4]
Gorgosaurus teeth were typical of all known tyrannosaurids. The eight premaxillary teeth at the front of the snout were smaller than the rest, closely packed and D-shaped in cross section. In Gorgosaurus, the first tooth in the maxilla was also shaped like the premaxillary teeth. The rest of the teeth were oval in cross section, rather than blade-like as in most other theropods.[2] Along with the eight premaxillary teeth, Gorgosaurus had 26 to 30 maxillary teeth and 30 to 34 teeth in the dentary bones of the lower jaw. This number of teeth is similar to Albertosaurus and Daspletosaurus but is fewer than those of Tarbosaurus or Tyrannosaurus.[5]
Gorgosaurus shared its general body plan with all other tyrannosaurids. Its massive head was perched on the end of an S-shaped neck. In contrast to its large head, its forelimbs were very small. The forelimbs had only two digits, although a third metacarpal is known in some specimens, the vestigial remains of the third digit seen in other theropods. Gorgosaurus had four digits on each hindlimb, including a small first toe (hallux) which did not contact the ground. Tyrannosaurid hindlimbs were long relative to overall body size compared with other theropods.[2] The largest known Gorgosaurus femur measured 105 centimeters (41 in) long. In several smaller specimens of Gorgosaurus, the tibia was longer than the femur, a proportion typical of fast-running animals.[1] The two bones were of equal length in the largest specimens.[6] The long, heavy tail served as a counterweight to the head and torso and placed the center of gravity over the hips.[2]
Classification and systematics[]
Cladogram of Tyrannosauridae highlighting the position of Gorgosaurus
*Note: Carr et al. regard Gorgosaurus libratus as a species of Albertosaurus and Tarbosaurus bataar as a species of Tyrannosaurus
|
Gorgosaurus is classified in the theropod subfamily Albertosaurinae within the family Tyrannosauridae. It is most closely related to the slightly younger Albertosaurus.[5] These are the only two definite albertosaurine genera that have been described, although other undescribed species may exist.[4]Appalachiosaurus was described as a basal tyrannosauroid just outside Tyrannosauridae,[7] although American paleontologist Thomas Holtz published a phylogenetic analysis in 2004 which indicated it was an albertosaurine.[2] More recent, unpublished work by Holtz agrees with the original assessment.[8] All other tyrannosaurid genera, including Daspletosaurus, Tarbosaurus and Tyrannosaurus, are classified in the subfamily Tyrannosaurinae. Compared to the tyrannosaurines, albertosaurines had slender builds, with proportionately smaller, lower skulls and longer bones of the lower leg (tibia) and feet (metatarsals and phalanges).[5][9]
The close similarities between Gorgosaurus libratus and Albertosaurus sarcophagus have led many experts to combine them into one genus over the years. Albertosaurus was named first, so by convention it is given priority over the name Gorgosaurus, which is sometimes considered its junior synonym. William Diller Matthew and Barnum Brown doubted the distinction of the two genera as early as 1922.[10]Gorgosaurus libratus was formally reassigned to Albertosaurus (as Albertosaurus libratus) by Dale Russell in 1970,[1] and many subsequent authors followed his lead.[7][11] Combining the two greatly expands the geographical and chronological range of the genus Albertosaurus. Other experts maintain the two genera as separate.[2] Canadian paleontologist Phil Currie claims there are as many anatomical differences between Albertosaurus and Gorgosaurus as there are between Daspletosaurus and Tyrannosaurus, which are almost always kept separate. He also notes that undescribed tyrannosaurids discovered in Alaska, New Mexico and elsewhere in North America may help clarify the situation.[4]
Discovery and naming[]
Gorgosaurus libratus was first described by Lawrence Lambe in 1914.[12][13] Its name is derived from the Greek γοργος/gorgos ("fierce" or "terrible") and σαυρος/saurus ("lizard").[14] The type species is G. libratus; the specific epithet "balanced" is the past participle of the Latin verb librare, meaning "to balance".[13]
The holotype of Gorgosaurus libratus (NMC 2120) is a nearly complete skeleton associated with a skull, discovered in 1913 by Charles M. Sternberg. This specimen was the first tyrannosaurid found with a complete hand.[12] It was found in the Dinosaur Park Formation of Alberta and is housed in the Canadian Museum of Nature in Ottawa.[4] Prospectors from the American Museum of Natural History in New York City were active along the Red Deer River in Alberta at the same time, collecting hundreds of spectacular dinosaur specimens, including four complete G. libratus skulls, three of which were associated with skeletons. Matthew and Brown described four of these specimens in 1923.[6]
Matthew and Brown also described a fifth skeleton (AMNH 5664), which Charles H. Sternberg had collected in 1917 and sold to their museum. It was smaller than other Gorgosaurus specimens, with a lower, lighter skull and more elongate limb proportions. Many sutures between bones were unfused in this specimen as well. Matthew and Brown noted that these features were characteristic of juvenile tyrannosaurids, but still described it as the holotype of a new species, G. sternbergi.[6] Today's paleontologists regard this specimen as a juvenile G. libratus.[2][4] Dozens of other specimens have been excavated from the Dinosaur Park Formation and are housed in museums across the United States and Canada.[1][4]G. libratus is the best-represented tyrannosaurid in the fossil record, known from a virtually complete growth series.[2][15]
In 1856, Joseph Leidy described two tyrannosaurid premaxillary teeth from Montana. Although there was no indication of what the animal looked like, the teeth were large and robust, and Leidy gave them the name Deinodon.[16] Matthew and Brown commented in 1922 that these teeth were indistinguishable from those of Gorgosaurus, but in the absence of skeletal remains of Deinodon, opted not to synonymize the two genera.[10] Although Deinodon teeth are very similar to those of Gorgosaurus, tyrannosaurid teeth are extremely uniform, so it cannot be said for certain which animal they belonged to. Deinodon is regarded as a nomen dubium today.[1][15] Several tyrannosaurid skeletons from the Judith River Formation of Montana probably belong to Gorgosaurus, although it remains uncertain whether they belong to G. libratus or a new species.[4] One specimen from Montana (TCMI 2001.89.1), housed in the Children's Museum of Indianapolis, shows evidence of severe pathologies, including healed leg, rib, and vertebral fractures, osteomyelitis (infection) at the tip of the lower jaw resulting in permanent tooth loss, and possibly a brain tumor.[17][18]
Misassigned species[]
Several species were incorrectly assigned to Gorgosaurus in the twentieth century. A complete skull of a small tyrannosaurid (CMNH 7541), found in the younger, late Maastrichtian-age Hell Creek Formation of Montana, was named Gorgosaurus lancensis by Charles Whitney Gilmore in 1946.[19] This specimen was renamed Nanotyrannus by Bob Bakker and colleagues in 1988.[20] Today, most paleontologists recognize Nanotyrannus as a juvenile Tyrannosaurus rex.[2][15] Similarly, Evgeny Maleev created the names Gorgosaurus lancinator and Gorgosaurus novojilovi for two small tyrannosaurid specimens (PIN 553-1 and PIN 552-2) from the Nemegt Formation of Mongolia in 1955.[21]Ken Carpenter renamed the smaller specimen Maleevosaurus novojilovi in 1992,[22] but both are now considered juveniles of Tarbosaurus bataar.[2][15][23]
Paleobiology[]
Coexistence with Daspletosaurus[]
In the Dinosaur Park Formation, Gorgosaurus lived alongside a rarer species of the tyrannosaurine Daspletosaurus. This is one of the few examples of two tyrannosaur genera coexisting. Similarly-sized predators in modern predator guilds are separated into different ecological niches by anatomical, behavioral or geographical differences that limit competition. Niche differentiation between the Dinosaur Park tyrannosaurids is not well-understood.[24] In 1970, Dale Russell hypothesized the more common Gorgosaurus actively hunted fleet-footed hadrosaurs, while the rarer and more troublesome ceratopsians and ankylosaurians (horned and heavily armoured dinosaurs) were left to the more heavily-built Daspletosaurus.[1] However, a specimen of Daspletosaurus (OTM 200) from the contemporaneous Two Medicine Formation of Montana preserves the digested remains of a juvenile hadrosaur in its gut region.[25]
Unlike some other groups of dinosaurs, neither genus was more common at higher or lower elevations than the other.[24] However, Gorgosaurus appears more common in northern formations like the Dinosaur Park, with species of Daspletosaurus more abundant to the south. The same pattern is seen in other groups of dinosaurs. Chasmosaurine ceratopsians and hadrosaurine hadrosaurs are also more common in the Two Medicine Formation of Montana and in southwestern North America during the Campanian, while centrosaurine and lambeosaurines dominate in northern latitudes. Holtz has suggested this pattern indicates shared ecological preferences between tyrannosaurines, chasmosaurines and hadrosaurines. At the end of the later Maastrichtian stage, tyrannosaurines like Tyrannosaurus rex, hadrosaurines like Edmontosaurus and chasmosaurines like Triceratops were widespread throughout western North America, while albertosaurines and centrosaurines went extinct, and lambeosaurines were rare.[2]
Life history[]
Gregory Erickson and colleagues have studied the growth and life history of tyrannosaurids using bone histology, which can determine the age of a specimen when it died. A growth curve can be developed when the ages of various individuals are plotted against their sizes on a graph. Tyrannosaurids grew throughout their lives, but underwent tremendous growth spurts for about four years, after an extended juvenile phase. Sexual maturity may have ended this rapid growth phase, after which growth slowed down considerably in adult animals. Examining five Gorgosaurus specimens of various sizes, Erickson calculated a maximum growth rate of about 110 kilograms (50 lb) during the rapid growth phase, slower than in tyrannosaurines like Daspletosaurus and Tyrannosaurus, but comparable to Albertosaurus.[26]
Gorgosaurus spent as much as half its life in the juvenile phase before ballooning up to near-maximum size in only a few years.[26] This, along with the complete lack of predators intermediate in size between huge adult tyrannosaurids and other small theropods, suggests these niches may have been filled by juvenile tyrannosaurids. This is seen in modern Komodo dragons, where hatchlings start off as tree-dwelling insectivores and slowly mature into massive apex predators capable of taking down large vertebrates.[2] Other tyrannosaurids, including Albertosaurus, have been found in aggregations that some have suggested to represent mixed-age packs, but there is no evidence of gregarious behavior in Gorgosaurus.[27][28]
Paleoecology[]
All known specimens of Gorgosaurus libratus have been recovered from the Dinosaur Park Formation in Alberta.[4] This formation dates to the middle of the Campanian, between 76.5 and 74 million years ago.[29] At this time, the area was a coastal plain along the western edge of the Western Interior Seaway, which divided North America in half. The Laramide Orogeny had begun uplifting the Rocky Mountains to the west, from which flowed great rivers that deposited eroded sediment in vast floodplains along the coast.[30][31] The climate was subtropical with marked seasonality, and periodic droughts sometimes resulted in massive mortality among the great herds of dinosaurs, as represented in the numerous bonebed deposits preserved in the Dinosaur Park Formation. Conifers formed the forest canopy, while the understory plants consisted of ferns, tree ferns and angiosperms.[32] Around 73 million years ago, the seaway began to expand, transgressing into areas formerly above sea level and drowning the Dinosaur Park ecosystem. This transgression, called the Bearpaw Sea, is recorded by the marine sediments of the massive Bearpaw Shale.[31]
The Dinosaur Park Formation preserves a great wealth of vertebrate fossils. A wide variety of fish swam the rivers and estuaries, including gars, sturgeons, sharks and rays, among others. Frogs, salamanders, turtles, crocodilians and champsosaurs also dwelled in the aquatic habitats. Azhdarchid pterosaurs and neornithine birds like Apatornis flew overhead, while the enantiornithine bird Avisaurus lived on the ground alongside multituberculate, marsupial and placental mammals. A number of species of terrestrial lizards were also present, including whiptails, skinks, monitors and alligator lizards. Dinosaur fossils in particular are found with unrivaled abundance and diversity. Huge herds of ceratopsids roamed the floodplains alongside equally large groups of hadrosaurine and lambeosaurine hadrosaurs. Other herbivorous groups like ornithomimids, therizinosaurs, pachycephalosaurs, small ornithopods, nodosaurids and ankylosaurids were also represented. Small predatory dinosaurs like oviraptorosaurs, troodonts and dromaeosaurs hunted smaller prey than the huge tyrannosaurids, Daspletosaurus and Gorgosaurus, which were two orders of magnitude larger in mass.[31] Intervening predatory niches may have been filled by young tyrannosaurids.[1][2][33]
Gallery[]
References[]
- ^ a b c d e f g h Russell, Dale A. (1970). "Tyrannosaurs from the Late Cretaceous of western Canada". National Museum of Natural Sciences Publications in Paleontology 1: 1–34.
- ^ a b c d e f g h i j k l m n Holtz, Thomas R. (2004). "Tyrannosauroidea". in Weishampel, David B.; Dodson, Peter; & Osmólska, Halszka (eds.).. The Dinosauria (Second Edition ed.). Berkeley: University of California Press. pp. 111–136. ISBN 0-520-24209-2.
- ^ Seebacher, Frank (2001). "A new method to calculate allometric length-mass relationships of dinosaurs". Journal of Vertebrate Paleontology 21 (1): 51–60. doi: .
- ^ a b c d e f g h Currie, Philip J. (2003). "Cranial anatomy of tyrannosaurids from the Late Cretaceous of Alberta" (PDF). Acta Palaeontologica Polonica 48 (2): 191–226. http://www.app.pan.pl/article/item/app48-191.html?pdf=39.
- ^ a b c d Currie, Philip J.; Hurum, Jørn H; & Sabath, Karol. (2003). "Skull structure and evolution in tyrannosaurid phylogeny" (PDF). Acta Palaeontologica Polonica 48 (2): 227–234. http://www.app.pan.pl/archive/published/app48/app48-227.pdf.
- ^ a b c Matthew, William D.; & Brown, Barnum. (1923). "Preliminary notices of skeletons and skulls of Deinodontidae from the Cretaceous of Alberta". American Museum Novitates 89: 1–9. http://digitallibrary.amnh.org/dspace/handle/2246/3207.
- ^ a b c Carr, Thomas D.; Williamson, Thomas E.; & Schwimmer, David R. (2005). "A new genus and species of tyrannosauroid from the Late Cretaceous (middle Campanian) Demopolis Formation of Alabama". Journal of Vertebrate Paleontology 25 (1): 119–143. doi: .
- ^ Holtz, Thomas R. (2005-09-20). "RE: Burpee Conference (LONG)". http://dml.cmnh.org/2005Sep/msg00345.html. Retrieved on 2007-06-18.
- ^ Currie, Philip J. (2003). "Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia". Canadian Journal of Earth Sciences 40 (4): 651–665. doi:. http://www.ingentaconnect.com/content/nrc/cjes/2003/00000040/00000004/art00014.
- ^ a b Matthew, William D.; & Brown, Barnum. (1922). "The family Deinodontidae, with notice of a new genus from the Cretaceous of Alberta". Bulletin of the American Museum of Natural History 46 (6): 367–385. http://digitallibrary.amnh.org/dspace/handle/2246/1300.
- ^ Paul, Gregory S. (1988). Predatory Dinosaurs of the World. New York: Simon & Schuster. p. 464pp. ISBN 978-0671619466.
- ^ a b Lambe, Lawrence M. (1914). "On the fore-limb of a carnivorous dinosaur from the Belly River Formation of Alberta, and a new genus of Ceratopsia from the same horizon, with remarks on the integument of some Cretaceous herbivorous dinosaurs". Ottawa Naturalist 27: 129–135.
- ^ a b Lambe, Lawrence M. (1914). "On a new genus and species of carnivorous dinosaur from the Belly River Formation of Alberta, with a description of Stephanosaurus marginatus from the same horizon". Ottawa Naturalist 28: 13–20.
- ^ Liddell, Henry G.; & Scott, Robert (1980). Greek-English Lexicon (Abridged Edition ed.). Oxford: Oxford University Press,. ISBN 0-19-910207-4.
- ^ a b c d Carr, Thomas D. (1999). "Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria)". Journal of Vertebrate Paleontology 19 (3): 497–520. http://www.vertpaleo.org/publications/jvp/19-497-520.cfm.
- ^ Leidy, Joseph. (1856). "Notice of remains of extinct reptiles and fishes, discovered by Dr. F.V. Hayden in the badlands of the Judith River". Proceedings of the Academy of Sciences in Philadelphia 8: 72–73.
- ^ Pickrell, John. (2003-11-24). "First dinosaur brain tumor found, experts suggest". National Geographic News. http://news.nationalgeographic.com/news/2003/11/1124_031124_dinocancer.html. Retrieved on 2008-02-07.
- ^ "Meet the Gorgosaur". The Children's Museum of Indianapolis. http://www.childrensmuseum.org/themuseum/dinosphere/profiles/gorgo.html. Retrieved on 2008-02-07.
- ^ Gilmore, Charles W. (1946). "A new carnivorous dinosaur from the Lance Formation of Montana". Smithsonian Miscellaneous Collections 106: 1–19.
- ^ Bakker, Robert T.; Williams, Michael; & Currie, Philip J. (1988). "Nanotyrannus, a new genus of pygmy tyrannosaur, from the latest Cretaceous of Montana". Hunteria 1 (5): 1–30.
- ^ Maleev, Evgeny A. (1955). "New carnivorous dinosaurs from the Upper Cretaceous of Mongolia" (in Russian). Doklady, Academy of Sciences USSR 104 (5): 779–783.
- ^ Carpenter, Ken. (1992). "Tyrannosaurids (Dinosauria) of Asia and North America". in Mateer, Niall J.; and Chen Peiji (eds.). Aspects of Nonmarine Cretaceous Geology. Beijing: China Ocean Press. pp. 250–268. https://scientists.dmns.org/sites/kencarpenter/PDFs%20of%20publications/pdfs.aspx.
- ^ Rozhdestvensky, Anatoly K. (1965). "Growth changes in Asian dinosaurs and some problems of their taxonomy". Paleontological Journal 3: 95–109.
- ^ a b Farlow, James O.; & Pianka, Eric R. (2002). "Body size overlap, habitat partitioning and living space requirements of terrestrial vertebrate predators: implications for the paleoecology of large theropod dinosaurs". Historical Biology 16 (1): 21–40. doi: .
- ^ Varricchio, David J. (2001). "Gut contents from a Cretaceous tyrannosaurid: implications for theropod dinosaur digestive tracts". Journal of Paleontology 75 (2): 401–406. doi: .
- ^ a b Erickson, Gregory M.; Makovicky, Peter J.; Currie, Philip J.; Norell, Mark A.; Yerby, Scott A.; & Brochu, Christopher A. (2004). "Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs". Nature 430: 772–775. doi: .
- ^ Tanke, Darren H.; & Currie, Philip J. (1998). "Head-biting behavior in theropod dinosaurs: paleopathological evidence" (PDF). Gaia 15: 167–184. http://www.mnhn.ul.pt/geologia/gaia/12.pdf. [not printed until 2000]
- ^ Currie, Philip J.; Trexler, David; Koppelhus, Eva B.; Wicks, Kelly; & Murphy, Nate. (2005). "An unusual multi-individual tyrannosaurid bonebed in the Two Medicine Formation (Late Cretaceous, Campanian) of Montana (USA)". in Carpenter, Kenneth (ed.).. The Carnivorous Dinosaurs. Bloomington: Indiana University Press. pp. 313–324. ISBN 978-0253345394.
- ^ Eberth, David A.; & Hamblin, Anthony P. (1993). "Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the Upper Judith River Group (Belly River wedge) of southern Alberta, Saskatchewan, and northern Montana". Canadian Journal of Earth Sciences 30: 174–200.
- ^ English, Joseph M.; & Johnston, Stephen T. (2004). "The Laramide Orogeny: what were the driving forces?". International Geology Review 46 (9): 833–838. doi:. http://www.ingentaconnect.com/content/bell/igr/2004/00000046/00000009/art00004.
- ^ a b c Eberth, David A. (1997). "Judith River Wedge". in Currie, Philip J. & Padian, Kevin (eds.).. Encyclopedia of Dinosaurs. San Diego: Academic Press. pp. 199–204. ISBN 0-12-226810-5.
- ^ Braman, Dennis R.; and Koppelhus, Eva B. (2005). "Campanian palynomorphs". in Currie, Phillip J. and Koppelhus, Eva B. (eds.). Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed. Bloomington: Indiana University Press. pp. 101–130. ISBN 0-253-34595-2.
- ^ Farlow, James O. (1976). "Speculations about the diet and foraging behavior of large carnivorous dinosaurs". American Midland Naturalist 95 (1): 186–191. doi:. http://links.jstor.org/sici?sici=0003-0031%28197601%2995%3A1%3C186%3ASATDAF%3E2.0.CO%3B2-5.
External links[]
- Gorgosaurus from Palaeos.com